Electrak® HD Linear Actuator with Flexible Onboard Controls, Superior Performance and **Unmatched Environmental Protection** **NEW!** Available with Synchronization Option # Electrak® HD — Superior Performance Linear Actuator Higher power, longer stroke, onboard controls with optional J1939 CAN bus and unmatched environmental protection The Electrak HD is a new electric linear actuator platform with onboard electronics, which can eliminate the need for standalone controls. Higher power opens a new, wider range of hydraulic applications to electric conversion. And it meets the most extreme OEM component environmental acceptance tests, including IP69K. ### **Industry-Leading, Onboard Electronics** The new Electrak Modular Control System (EMCS) is the foundation for the best onboard controls currently available in electric linear actuators and includes optional, built-in J1939 CAN bus support. The feature-rich modular design for all control and feedback options is simple to use and built within one compact housing. It improves controllability, saves space and reduces installation time and total cost. - Built-in J1939 CAN bus option enhances controllability, can eliminate individual controls and simplifies OEM machine design - Electronic trip point calibration ensures consistent overload protection - Constant monitoring of critical parameters such as end-of-stroke, voltage, current and temperature is standard on all HD actuators - Built-in dynamic braking reduces coast at the end of stroke, improving repeatability - Optional low-level switching with automatic sleep mode reduces footprint, lowers costs and boosts circuit isolation - Optional end-of-stroke indication output for customer use, such as interlocks - NEW! Optional synchronization feature allows for motion integration of up to four actuators ### **Superior Performance** Higher power and longer stroke lengths enable Electrak HD to tackle applications outside the range of other electric linear actuators. - Higher load ranges up to 10 kN (2250 lbs.) are ideal for hydraulic-to-electric conversion applications - Stroke lengths up to 1000 mm (39 in.) - Efficient actuator design, including a high-quality ball screw, reduces current draw by up to 20% ### **Unrivaled Environmental Protection** Electrak HD is tested to meet and exceed the toughest OEM mechanical and electronic component acceptance tests on the market today. - IP69K (static), IP67 (static) and IP66 (dynamic) ratings prove Electrak HD can withstand the harshest environments - Capable of operating in a wide temperature range from -40°C to +85°C (-40°F to +185°F) - Salt spray tested for 200 hours - CE, RoHS and REACH (EU) compliant NEW! Rated for IP-X6 (dynamic) during water splash at +10°C (+50°F) and an equalized ### **Additional Standard Features** - Integrated manual override - Standard anti-rotation actuation - Integrated thermal overload protection - Load lock in case of ball nut overload failure - Flexible front and rear clevis options ### How Thomson Built a World-Class Linear Actuator - 1. Start with the proven, rugged Electrak® electric linear actuator. - 2. Add state-of-the-art onboard controls, feedback, J1939 CAN bus and eliminate the need for standalone controls. - 3. Boost the power, increase stroke lengths and reduce current draw. - 4. Design it all into a more compact envelope with the best environmental protections on the market today. ### **SUPERIOR PERFORMANCE** Higher power and longer stroke lengths enable Electrak HD to tackle applications outside the range of other electric linear actuators. - 4 Modular Cabling - 5 Standard Anti-Rotation Feature - 6 Static Load Holding Brake - 7 Robust Zinc Housing - 8 Large Variety of Adapters - 9 Integrated Manual Override - 10 High-Efficiency Ball Screw Assembly ### **UNRIVALED ENVIRONMENTAL PROTECTION** Electrak HD is tested to meet and exceed the toughest OEM mechanical and electronic component acceptance tests on the market today. - 11 IP67/IP69K Protection Class - 14 Large Operating Temperature Range - 12 Stainless Steel Extension Tube - 15 Hard-Coat Anodized Aluminum Cover Tube - 13 Salt Spray Tested for 200 Hours ### Smart Onboard Electronics for Easier Control Thomson's Electrak Modular Control System (EMCS) is built into every HD actuator and serves as the foundation for the best onboard controls currently available on the market, including optional J1939 CAN bus. ### **Industry-Leading Onboard Electronics** EMCS is the culmination of decades of global design and application engineering in some of the toughest environments. # Electronic Monitoring Package – Standard on all Electrak HD Actuators Safety comes first. Each HD electric linear actuator is equipped with the Electrak Monitoring Package, which will constantly monitor critical parameters and take appropriate action as needed. Each unit will reset automatically when conditions return to normal, allowing for operation to continue. # A Wide Range of Optional Control Features Within the Same Compact Envelope Optional control functions can eliminate the need for external controls, saving design and installation time, as well as space and installed cost. A generous selection of control configurations can tailor HD to fit a wide breadth of heavy duty applications. The available control configurations are described on the next page and more details, including wiring diagrams for each option, begin on page 22. ### Electrak Monitoring Package Standard Features ### **Current Monitoring** A critical safety feature that shuts down the actuator on overload and eliminates the need for the traditional noisy mechanical clutch. ### **Voltage and Temperature Monitoring** Continuous monitoring protects the actuator by preventing motion if outside normal ranges. ### **Temperature Compensation** Boosts productivity by enabling normal operation at lower temperatures without nuisance tripping. ### **Load Trip Point Calibration** Each Electrak HD actuator is individually calibrated at assembly to ensure a repeatable overload trip point. ### **Internal End-of-Stroke Limit Switches** Built in to each HD actuator, they ensure smooth, repeatable operation and protect both connected equipment and the actuator. ### **End-of-Stroke Dynamic Braking** Enable quick end-of-stroke stops, putting less stress on the internal mechanical parts. ### **Optional Control Features** ### J1939 CAN Bus Allows plug and play connectivity on your already established J1939 network. #### **Synchronization Option** Enables motion integration of up to four actuators. #### **Mid-Stroke Dynamic Braking** Standard with the low-level switching or CAN bus options. Reduces coast, improving repeatability. ### **Low-Level Switching** Improves safety and simplifies design by using low current (< 22 mA) signals. Also saves energy with an auto sleep feature. #### **Limit Switch Output** Confirms successful operation by indicating the actuator is fully extended or retracted. #### **Analog Position Output** A high-quality potentiometer with essentially infinite resolution and low noise provides a voltage signal for position and direction feedback. #### **Digital Position Output** An encoder provides a single-channel pulse train for position and speed feedback, which can be used to allow synchronization via customer control. ### **Control Option Combinations** | Code | Control Combination Possibilities | Code | Control Combination Possibilities | |------|---------------------------------------|------|---| | EXX | Electrak Monitoring Package only | LXX | EXX + Low-Level Signal Motor Switching | | ELX | EXX + End-of-Stroke Indication Output | LLX | EXX + LXX + End-of-Stroke Indication Output | | EXP | EXX + Analog Position Output | LXP | EXX + LXX + Analog Position Output | | EXD | EXX + Digital Position Output | CNO | J1939 CAN Bus Control + Open-Loop Speed Control | | ELP | ELX + Analog Position Output | SYN | Synchronization Option | | ELD | ELX + Digital Position Output | | | ### Bus Communication — The Future of Actuator Control Controlling an actuator over a network bus opens the door to breakthrough opportunities in machine design. More control, monitoring and feedback options can eliminate the need for separate controls. These options will also simplify design, diagnostic feedback and installation while reducing installed costs. The built-in CAN bus option makes it possible to communicate with Electrak® HD electric linear actuators over a simple two-wire network. ### **CAN Bus in Practice** Electrak HD uses J1939 CAN bus, a well-known, mature bus standard widely used in the construction and agriculture industries. Up to 16 Electrak HD actuators can be connected to the same controller and to other CAN bus controls in the network. Complex, real-time interactions between multiple actuators and related systems are now much simpler to monitor and control. ### **Application Examples** - Check position of doors and hatches and take action depending on the situation - Monitor the temperature, overload condition or voltage variations, then take action across the network as needed. Examples: start ventilation, reduce speed or stop an operation. - Confirm when position or other criteria are met - Synchronize the motion of several actuators ### **Benefits of CAN Bus Controls** - Better controllability more complex, precisely controlled motion - Improved safety feedback in real-time with all operations verified - Shorter design cycles and installation time – CAN bus means minimal wiring, no extra control boxes and quick connection to existing networks - Greater flexibility use the same actuator with minor program edits for multiple applications instead of designing for unique actuators and controls for every type of application - Reduced costs all of the above will lead to reduced design, component, installation, operation and maintenance costs ### Control Architecture With and Without CAN Bus ### **System
Without CAN Bus** - A power (1) is distributed to each device - A main control (2) system communicates separately with an individual control (3) box connected to an actuator. Each instance may require individual design, configuration, wiring and installation. - Other equipment (4) that needs to be controlled or integrated with the actuators requires separate controls with more design and configuration required ### **System With CAN Bus** - A control system and actuators with CAN bus can communicate directly to each other. Adding additional, separately configured actuators is fast and easy. Only the power and a two-wire bus cable are needed to extend the network. - Any other equipment with CAN bus can be connected to the bus and communicate directly - The result is a less complex system to design, better performance and controllability, and reduced installation time and overall cost # Electrak® HD — Smarter, Stronger, Longer In addition to advanced control features, the Electrak HD offers 50% higher load capacity and 60% longer stroke lengths than previous designs, and is faster than the competition at comparable loads. This new, extended envelope of operation also opens a larger range of hydraulic-to-electric application conversions. Electrak HD offers smart design solutions, like builtin cable management, an integrated connector and a manual override feature on every actuator. Building on the capabilities of the Electrak 10, the workhorse of electric actuators for decades, the Electrak HD offers onboard controls, higher load capacity (up to 10 kN [2250 lbs.]), longer strokes (up to 1 m [39 in.]) and higher speeds. # Ready to Work in Extreme Environments The Electrak HD is well suited for heavy duty, industrial applications, including conversion of hydraulic to electric actuation. It shows its mettle when used under the harshest conditions. Each HD actuator is designed to meet and exceed the toughest OEM mechanical and electrical components tests, including IP69K. ### **Accelerated Trend Toward Electric Conversions** Once dominated by manual, pneumatic and hydraulic systems, mobile on- and off-highway equipment is increasingly equipped with electric actuators to automate many tasks. Electric linear actuators are easier to integrate with modern computer-based control systems and are precisely controlled. They consume a smaller footprint and are cleaner than both pneumatic and hydraulic systems. ### Easier Installation, Superior Control and Less Complexity ### **Simpler, Smaller and Faster to Install** - Electric actuation requires fewer components than hydraulic or pneumatic systems for faster and easier installation - Component costs are less than in comparable hydraulic or pneumatic systems - A smaller footprint simplifies and speeds design ### **Easier Control, Better Accuracy** - All-electric components mean easier integration, fewer control components and less complexity - Electric actuators react quicker and more predictably, and will not drift when power is off ### **Lower Energy Costs** - Electric motors are intrinsically more efficient than pneumatic or hydraulic motors - No need to up-size the existing system to account for potential parasitic power draw - No power required to hold load-reducing power consumption ### **Less Maintenance** - No hydraulic pumps, valves or hoses means reduced downtime with fewer parts to service and replace - Self-contained units with smart, onboard electronics require zero maintenance, adding design flexibility in component placement - Electric actuation eliminates the cost and hassle associated with fluid maintenance ### **Cleaner, Quieter, Healthier Environment** - No pumps, fluids, chemicals or solvents translates into a cleaner and quieter workspace - A compact design requires fewer materials to be used in production - Regional manufacturing and distribution plants minimize freight and reduce the carbon footprint ### Improving Machine Design with Electric Actuation These applications illustrate how the Electrak® HD can deliver huge benefits over pneumatic and hydraulic mechanisms, including reduced design, installation and operation costs, while improving controllability, safety and productivity. ### Single-User Maintenance and Repair Electric linear actuators enable a single maintenance or repair technician to access the engine compartment quickly and safely. ### **Quick-Attach** Quick-attach actuators allow the operator to change implements on the loader or skid steer without leaving the seat for improved productivity and safety. ### **Utility Vehicles** Garden, construction and service vehicles require rugged, efficiently controlled performance. The environmental protection (IP69K), high load capabilities and J1939 CAN bus communication provide that performance. ### **Roadwork and Construction Site Equipment** Long stroke, protection against harsh environments and high load rating (including high shock loading for wind shear) make the Electrak HD a great fit for this roadside construction sign. ### **Railroad Equipment** Railroad equipment experiences the toughest conditions. Whether it is to open and close a gravity bin or to control a pantograph, the Electrak HD actuator will perform effectively despite harsh weather, heavy vibrations or high-pressure washing. ### **Emergency and Rescue Vehicles** The deployment of lighting on emergency vehicles demands the most reliable operation. Electrak HD is easily controlled, has a built-in manual override and operates reliably in all weather to help emergency responders perform their jobs safely. ### **Logistic Systems** The Electrak HD, with its built-in J1939 CAN bus capabilities, makes it easy to build intelligent logistic systems such as the material handling train shown here. ### **Switch Gears** Electrical switch gears are often placed in remote locations. It is critical that power switching is executed and confirmed without fail. Electrak HD is ideal for this task in arctic to high-temperature conditions. # Electrak® HD Technical Features # The Thomson Electrak HD is a New Electric Linear Actuator Platform Onboard electronics eliminate the need for standalone controls. Higher power opens a new, wider range of hydraulic-to-electric application conversions. And the Electrak HD meets the most extreme OEM component environmental acceptance tests, including IP69K. | General Specifications | | | | | | | |----------------------------|---------------------------------------|--|--|--|--|--| | Parameter | Electrak HD | | | | | | | Screw type | ball | | | | | | | Nut type | load lock ball nut | | | | | | | Manual override | yes | | | | | | | Anti-rotation | yes | | | | | | | Dynamic braking | yes (1) | | | | | | | Static load holding brake | yes | | | | | | | End-of-stroke protection | internal end-of-stroke limit switches | | | | | | | Overload protection | yes | | | | | | | Temperature monitoring | yes | | | | | | | Temperature compensation | yes | | | | | | | Voltage monitoring | yes | | | | | | | Electrical connections (2) | cable(s) with flying leads | | | | | | | Compliance | CE | | | | | | ⁽¹⁾ Dynamic braking is included at the ends of stroke for all Electrak HD actuators. Dynamic braking offered throughout the entire stroke length only on low-level switching and J1939 options. ⁽²⁾ There are one or two cables depending on the control option used. The cable(s) enters the actuator via a connector. The replacement of an actuator can be completed by unplugging the old actuator and plugging in the new one. | Optional Features | | | | | | |--------------------|------------------------------------|--|--|--|--| | Parameter | Electrak HD | | | | | | Mechanical options | Variety of front and rear adapters | | | | | | | Alternative adapter orientation | | | | | | Control options | End-of-stroke output | | | | | | (see page 22) | Analog position feedback | | | | | | | Digital position feedback | | | | | | | Low-level signal motor switching | | | | | | | J1939 CAN bus | | | | | | | Synchronization | | | | | | Accessories | | | | | | | |-------------|--------------------------------------|--|--|--|--|--| | Parameter | Electrak HD | | | | | | | Mechanical | Rod end front adapter | | | | | | | Electrical | External slot-mounted limit switches | | | | | | # Electrak HD Technical Specifications | Mechanical Specifications | | | | | | | | | |---|---------------|---|--|--|--|--|--|--| | Parameter | | Electrak HD | | | | | | | | Max. static load (1) | [kN (lbs)] | 18 (4050) | | | | | | | | Max. dynamic load (Fx) HDxx-B017 HDxx-B026 HDxx-B045 HDxx-B068 HDxx-B100 | [kN (lbs)] | 1.7 (382)
2.6 (585)
4.5 (1012)
6.8 (1529)
10 (2248) | | | | | | | | Speed @ no load/max. load ⁽²⁾
HDxx-B017
HDxx-B026
HDxx-B045
HDxx-B068
HDxx-B100 | [mm/s (in/s)] | 71/58 (2.8/2.28)
40/32 (1.6/1.3)
24/19 (0.94/0.75)
18/14 (0.71/0.55)
11/9 (0.43/0.35) | | | | | | | | Min. ordering stroke (S) length | [mm] | 100 | | | | | | | | Max. ordering stroke (S) length | [mm] | 1000 | | | | | | | | Ordering stroke length increments | [mm] | 50 | | | | | | | | Operating temperature limits | [°C (F)] | - 40 — 85 (- 40 — 185) | | | | | | | | Full load duty cycle @ 25 °C (77 °F) | [%] | 25 ⁽³⁾ | | | | | | | | End play, maximum | [mm (in)] | 1.2 (0.047) | | | | | | | | Restraining torque | [Nm (lbs)] | 0 | | | | | | | | Protection class - static | | IP67 / IP69K | | | | | | | | Protection class - dynamic | | IP66 | | | | | | | | Salt spray resistance | [h] | 200 | | | | | | | ¹ Max. static load at fully retracted stroke. | Parameter | | Electrak HD | |---|------------
--| | Available input voltages | [Vdc] | 12, 24 | | Input voltage tolerance
HD12 (12 Vdc input voltage)
HD24 (24 Vdc input voltage) | [Vdc] | 9 - 16
18 - 32 | | Current draw @ no load/max. load
HD12-B017
HD24-B017
HD12-B026
HD24-B026
HD12-B045
HD24-B045
HD12-B068
HD12-B100
HD24-B100 | [A] | 3/18
1.5/9
3/18
1.5/9
3/18
1.5/9
3/20
1.5/10
3/18
1.5/9 | | Motor leads cross section | [mm²(AWG)] | 2 (14) | [mm² (AWG)] [m (in)] [mm (in)] [mm (in)] [mm (in)] 0.5 (20) 0.3, 1.5, 5 (11.8, 59, 197) 7.5 (.295) 76.2 (3) 6.35 (0.25) **Electrical Specifications** Signal leads cross section Cable diameter (Ca2) Flying lead length (Ca3) Stripped lead length (Ca4) Standard cable lengths (Ca1) The drawing shows the cables exiting the cable slots at the end of the actuator housing, which is the shipping position. The user can adjust the exit point to be anywhere between the connector (1) in the front of the housing and the end of the cable slots. | Actuator Weight [kg] |----------------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------| | Maximum Dynamic | Ordering Stroke (S) [mm] | Load (Fx) [kN (lbs)] | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 | 800 | 850 | 900 | 950 | 1000 | | 1.7 (382) | 6,5 | 6,7 | 7,0 | 7,2 | 7,5 | 7,7 | 8,0 | 8,2 | 8,5 | 8,7 | 9,0 | 9,2 | 9,5 | 9,7 | 10,0 | 10,2 | 10,5 | 10,7 | 11,0 | | 2.6 (585) | 6.5 | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 8.5 | 8.7 | 9.0 | 9.2 | 9.5 | 9.7 | 10.0 | 10.2 | 11.6 | 11.9 | 12.2 | | 4.5 (1012) | 6.5 | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 8.5 | 8.7 | 9.0 | 9.2 | 10.4 | 10.7 | 11.0 | 11.3 | 11.6 | 11.9 | 12.2 | | 6.8 (1592) | 6.5 | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 8.5 | 9.5 | 9.8 | 10.1 | 10.4 | 10.7 | 11.0 | 11.3 | 11.6 | 11.9 | 12.2 | | 10 (2248) | 6.7 | 7.0 | 7.2 | 7.5 | 7.7 | 8.0 | 8.2 | 9.1 | 9.4 | 9.7 | 10.0 | 10.3 | 10.6 | 10.9 | 11.2 | 11.5 | 11.8 | 12.1 | 12.4 | Conversion Factors: Millimeter to inch: 1 mm = 0.03937 in, kilogram to pound: 1 kg = 2.204623 lbs $^{^{\}rm 2}$ For units with the synchronization option, the speed is 25% lower at any load. ³ For a HDxx-B1000 actuator, unidirectional load, the duty cycle is 15%. ### How to Order the Electrak® HD This ordering key provides a quick overview of the product versions available. It is important to consider many application details when selecting a product, including the loads, speeds and control options required, as well as the product environment and necessary accessories. To explore additional technical resources and options, contact Thomson customer support at www.thomsonlinear.com/hd. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | |---|--|------------------------------|--|--|---|--------------------------|--------------|--|--|--| | HD12 | B026- | 0300 | LXX | 2 | M | M | S | | | | | HD12 = Elec
HD24 = Elec
2. Screw typ | d input voltage
ctrak HD, 12 Vdc
ctrak HD, 24 Vdc
e, dynamic load
I screw, 1.7 kN (382 | | | 4. Electrak Modular Control System options EXX = Electronic Monitoring Package only ELX = EXX + end-of-stroke indication output EXP = EXX + analog (potentiometer) position output EXD = EXX + digital position output ELP = ELX + analog (potentiometer) position output | | | | | | | | B026- = bal
B045- = bal
B068- = bal | l screw, 2.6 kN (585
l screw, 4.5 kN (101
l screw, 6.8 kN (152
l screw, 10 kN (224 | 5 lbs)
12 lbs)
29 lbs) | ELP = ELX + analog (potentionieter) position output ELD = ELX + digital position output LXX = EXX + low-level signal motor switching LLX = EXX + LXX + end-of-stroke indication output LXP = EXX + LXX + analog (potentiometer) position output CNO = J1939 CAN bus + open-loop speed control | | | | | | | | | 3. Ordering s | stroke length ⁽¹⁾ | | | | + Synchronization op | | | | | | | 0150 = 150
0200 = 200
0250 = 250
0300 = 300
0350 = 350 | mm
mm
mm
mm | | | 5. Harness option 1 = 0.3 m long cables with flying leads 2 = 1.5 m long cables with flying leads 3 = 5.0 m long cables with flying leads | | | | | | | | 0400 = 400
0450 = 450
0500 = 500
0550 = 550
0600 = 600
0650 = 650 | mm
mm
mm
mm
mm | | | E = cross ho
N = forked of | ter option ole for 12 mm pin ole for ½ inch pin cross hole for 12 mm ross hole for ½ inch | • | | | | | | 0700 = 700
0750 = 750
0800 = 800
0850 = 850
0900 = 900
0950 = 950
1000 = 1000 | mm
mm
mm
mm
mm | | | 7. Front adapter option M = cross hole for 12 mm pin E = cross hole for ½ inch pin N = forked cross hole for 12 mm pin F = forked cross hole for ½ inch pin P = metric female thread G = inch female thread | | | | | | | | | | | | 8. Adapter of S = standard M = 90 ° tu | d | | | | | | | | | | | M = 90 ° tu | | t. Plages contact custom | oor europeri | | | | # Performance Diagrams ¹ Curves valid for all units except those with the synchronization option, where the speed at any load is 25% lower than for those without. Note! Curves were generated at an ambient temperature of 21°C (70°F). Different ambient temperature and individual actuator characteristics can produce slightly different values. # **Dimensions** - * Manual override input. The input hole is covered with a plastic threaded plug. When removed, a 6 mm socket can be inserted and used as a crank. ** All adapters shown in the standard orientation. | Re | Rear Adapter Dimensions - mm (in.) | | | | | | | | | |----|------------------------------------|--------------|----------------|--------------|--|--|--|--|--| | | Adapter Type | | | | | | | | | | | М | Е | N | F | | | | | | | B1 | 13.4 (0.53) | 13.4 (0.53) | 13.4 (0.53) | 13.4 (0.53) | | | | | | | B2 | 21.6 (0.85) | 21.6 (0.85) | 21.6 (0.85) | 21.6 (0.85) | | | | | | | В3 | 25.4 (1.0) | 25.4 (1.0) | 25.4 (1.0) | 25.4 (1.0) | | | | | | | B4 | 12.2 E9 (0.48) | 12.8 (0.506) | 12.2 E9 (0.48) | 12.8 (0.506) | | | | | | | B5 | - | - | 8.2 (0.323) | 8.2 (0.323) | | | | | | | Fro | Front Adapter Dimensions - mm (in.) | | | | | | | | | |-----|-------------------------------------|--------------|----------------|--------------|------------|--------------|--|--|--| | | Adapter Type | | | | | | | | | | | M E N F P | | | | | G | | | | | C1 | see table on page 21 | | | | | | | | | | C2 | 10.9 (0.429) | 10.9 (0.429) | 12.9 (0.508) | 12.9 (0.508) | 30 (1.18) | 30 (1.18) | | | | | C3 | see table on page 21 | | | | | | | | | | C4 | 12.2 E9 (0.48) | 12.8 (0.506) | 12.2 E9 (0.48) | 12.8 (0.506) | M12×1.75 | 1/2-20 NF-2B | | | | | C5 | - | - | 8.2 (0.323) | 8.2 (0.323) | 19 (0.748) | 19 (0.748) | | | | | C6 | - | - | - | - | 35 (1.38) | 35 (1.38) | | | | # **Dimensions** | Maximum Dynamic Load and Stroke Relationships | | | | | | | | | | | | |--|-----------|----------------|---------------------|------------------------------------|---------------------|---------------------|---------------------|--|--|--|--| | Maximum | | Length (Ltot), | | Ordering Stroke (S) [mm] | | | | | | | | | Dynamic Retracted Length Load (Fx) - (A) and Adapter kN (lbs.) Dimensions [mm] | | | 100 – 500 | 550 – 600 | 750 – 900 | 950 – 1000 | | | | | | | | Ltot | | | | A + B1 + C2 | | | | | | | | | Α | | | | S + 150.9 + B2 + C1 | | | | | | | | 1.7 | C1 | Type M, E | | | 17.5 | | | | | | | | (382) | | Type N, F | | 26.5 | | | | | | | | | | | Type P, G | | | 23.9 | | | | | | | | | C3 | | | | 30.16 | | | | | | | | | Ltot | | | | 1 + C2 | | A + B1 + C2 | | | | | | | Α | | | S + 150.9 | + B2 + C1 | | S + 156.8 + B2 + C1 | | | | | | 2.6 | C1 | Type M, E | | 24.0 | | | | | | | | | (585) | Type N, F | | | 27.0 | | | | | | | | | | | Type P, G | | 23.9 | | | | | | | | | | C3 | | | 30 | | 34.93 | | | | | | | | Ltot | | | A + B1 + C2
S + 150.9 + B2 + C1 | | 1 + C2 | | | | | | | | Α | | | S + 156.8 | | | | | | | | | 4.5 | C1 | Type M, E | | 17.5 | | | | | | | | | (2012) | | Type N, F | | 26.5 | | | 27.0 | | | | | | | | Type P, G | | 23.9 | | | 1.9 | | | | | | | C3 | | | 30.16 | | | .93 | | | | | | | Ltot | | | A + B1 + C2 A + B1 + C2 | | | | | | | | | | А | | S + 150.9 | + B2 + C1 | | S + 156.8 + B2 + C1 | | | | | | | 6.8 | C1 | Type M, E | 17 | .5 | 24.0 | | | | | | | | (1529) | | Type N, F | 26 | | | 27.0 | | | | | | | | | Type P, G | 23 | | | 24.9 | | | | | | | | C3 | | 30. | 16 | | 34.93
1 + C2 | | | | | | | | Ltot | | A + B1 + C2 | | | | | | | | | | | А | | S + 180.9 + B2 + C1 | | S + 182 + B2 + C1 | | | | | | | | 10
(2248) | C1 | Type M, E | 17.5 | | 24.0 | | | | | | | | (2240) | | Type N, F | 26.5 | | | 7.0 | | | | | | | | 00 | Type P, G | 23.9 | | 24 | | | | | | | | | C3 | | 30.16 34.93 | | | | | | | | | Electrak® HD electric linear actuators feature the Electrak Modular Control System, and each unit is shipped with the Electronic Monitoring Package. A generous offering of optional control and feedback
features can be configured to fit most applications — all within the same design envelope. Details for each control option and its wiring are described on the following pages. Please contact customer support for more information at www.thomsonlinear.com/cs. | Control Option Type EXX | | | |---|-------|-------------------| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | Actuator current draw | [A] | see page 17 | Control option EXX contains all of the basic Electrak Monitoring Package features described on page 7, guaranteeing safe operation of the actuator and equipment. With control option EXX, the polarity of the motor voltage is switched by a customersupplied switch (switch, relay, etc.) to make the actuator extend or retract. The switch, power supply, wiring and all other components must be able to handle the motor current for the actuator model and load being used, as well as the inrush current (up to three times the max. continuous current for the max. load being used for up to 150 milliseconds). | Control Option Type ELX | | | |---|-------|-------------------| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | Actuator current draw | [A] | see page 17 | | Output contact type | | potential free | | Limit switch max. switch voltage | [Vdc] | 140 | | Limit switch max. switch current | [mA] | 350 | | Limit switch max. switch power | [W] | 5 | - F Fuse - S1 Double pole double throw switch Control option ELX works as option EXX but also has two outputs that indicate when the extension tube is in its fully extended or retracted position. | Control Option Type EXP | | | | |---|----------|---------------------------------|--| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | | Actuator current draw | [A] | see page 17 | | | Potentiometer type | | wirewound | | | Potentiometer max. input voltage | [Vdc] | 32 | | | Potentiometer max. power | [W] | 1 | | | Potentiometer linearity | [%] | ± 0.25 | | | Potentiometer output resolution
50 - 100 mm stroke
150 - 250 mm stroke
300 - 500 mm stroke
550 - 1000 mm stroke | [ohm/mm] | 65.62
32.81
19.69
9.84 | | - F Fuse - S1 Double pole double throw switch Control option EXP works as option EXX but also has an analog (potentiometer) output that will provide feedback on the extension tube position. | Control Option Type EXD | | | | |---|------------|---|--| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | | Actuator current draw | [A] | see page 17 | | | Encoder type | | hall effect | | | Encoder input voltage | [Vdc] | 4 - 24 | | | Encoder output voltage levels low (logical zero), typical / max. | [Vdc] | 0.1 / 0.25 | | | Encoder resolution
HDxx-B017
HDxx-B026
HDxx-B045
HDxx-B068
HDxx-B100 | [mm/pulse] | 0.277
0.154
0.092
0.068
0.040 | | - F Fuse - S1 Double pole double throw switch Control option EXD works as option EXX but also has a single-channel encoder output that will provide feedback on the extension tube position. | Control Option Type ELF |) | | |---|----------|---------------------------------| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | Actuator current draw | [A] | see page 17 | | Output contact type | | potential free | | Max. output voltage | [Vdc] | 140 | | Max. output current | [mA] | 350 | | Max. output power | [W] | 5 | | Potentiometer type | | wirewound | | Potentiometer max. input voltage | [Vdc] | 32 | | Potentiometer max. power | [W] | 1 | | Potentiometer linearity | [%] | ± 0.25 | | Potentiometer output resolution
50 - 100 mm stroke
150 - 250 mm stroke
300 - 500 mm stroke
550 - 1000 mm stroke | [ohm/mm] | 65.62
32.81
19.69
9.84 | - F Fuse - S1 Double pole double throw switch Control option ELP works as option EXP but also has two outputs that indicate when the extension tube is in its fully extended or retracted position. | Control Option Type ELD | | | | |---|------------|---|--| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | | Actuator current draw | [A] | see page 17 | | | Output contact type | | potential free | | | Max. output voltage | [Vdc] | 140 | | | Max. output current | [mA] | 350 | | | Max. output power | [W] | 5 | | | Encoder type | | hall effect | | | Encoder input voltage | [Vdc] | 5 | | | Encoder output voltage levels low (logical zero), typical / max. | [Vdc] | 0.1 / 0.25 | | | Encoder resolution
HDxx-B017
HDxx-B026
HDxx-B045
HDxx-B068
HDxx-B100 | [mm/pulse] | 0.277
0.154
0.092
0.068
0.040 | | - F Fuse - S1 Double pole double throw switch Control option ELD works as option EXD but also has two outputs that indicate when the extension tube is in its fully extended or retracted position. | Control Option Type LXX | | | |---|-------|-------------------| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | Actuator current draw | [A] | see page 17 | | Extend / retract input voltage | [Vdc] | 9 - 32 | | Extend / retract input current | [mA] | 6 - 22 | - F Fuse - S1 Extend switch - S2 Retract switch Control option LXX has all the basic Electrak Monitoring Package features included in control option EXX, but the polarity of the motor voltage is switched by the onboard electronics instead. The customer-supplied switches used to command the actuator to extend or retract only need to handle low-level signals. However, the power supply and wiring that supply the actuator must be able to handle the motor current for the actuator model and load being used, as well as the inrush current (up to one and a half times the max. continuous current for the max. load being used for up to 150 milliseconds). | Control Option Type LLX | | | |---|-------|-------------------| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | Actuator current draw | [A] | see page 17 | | Output contact type | | potential free | | Max. switched output voltage | [Vdc] | 140 | | Max. output current | [mA] | 350 | | Max. output power | [W] | 5 | | Extend / retract input voltage | [Vdc] | 9 - 32 | | Extend / retract input current | [mA] | 6 - 22 | - F Fuse - S1 Extend switch - S2 Retract switch Control option LLX works as option LXX but also has two outputs that indicate when the extension tube is in its fully extended or retracted position. | Control Option Type LXF |) | | |---|----------|---------------------------------| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | Actuator current draw | [A] | see page 17 | | Potentiometer type | | wirewound | | Potentiometer max. input voltage | [Vdc] | 32 | | Potentiometer max. power | [W] | 1 | | Potentiometer linearity | [%] | ± 0.25 | | Potentiometer output resolution
50 - 100 mm stroke
150 - 250 mm stroke
300 - 500 mm stroke
550 - 1000 mm stroke | [ohm/mm] | 65.62
32.81
19.69
9.84 | | Extend / retract input voltage | [Vdc] | 9 - 32 | | Extend / retract input current | [mA] | 6 - 22 | - F Fuse - S1 Extend switch - S2 Retract switch Control option LXP works as option LXX but also has an analog (potentiometer) output that will provide feedback on the extension tube position. | Control Option Type CNO | | | |---|-------|-------------------| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | Actuator current draw | [A] | see page 17 | | Command data includes: | | | | Feedback data includes: | | | F Fuse Control option CNO has a J1939 CAN bus control interface that controls and monitors the actuator. Extend and retract commands are sent via CAN messages on the CAN low and CAN high pins. Address select 1, 2 and 3 pins can be used as a BCD encoded adder to the default address. This can be used when multiple J1939 actuators are located on a single bus. | Control Option Type SYN | | | |---|-------|-------------------| | Actuator supply voltage
HD12
HD24 | [Vdc] | 9 - 16
18 - 32 | | Actuator current draw | [A] | see page 17 | | Extend / retract input voltage | [Vdc] | 9 - 32 | | Extend / retract input current | [mA] | 6 - 22 | | Number of synchronized actuators | | 2 - 4 | | Max. actuator speed difference | [%] | 25 | **Master actuator** violet grey not used - F Fuses - S1 Extend switch - S2 Retract switch - S3 Override switch - R Resistors 120 Ohm Control option SYN works as option LXX but also has a synchronization feature, allowing up to four units having the SYN option to run in integrated motion. When using the low-level extend and retract inputs on the master actuator, the slave(s) will follow. If there is a need to run an actuator individually, it is possible to put it into an override state by closing a switch (S3) connected to the red lead as shown in the wiring diagram. Uneven loading between the actuators is not recommended, but the synchronization option can withstand its effects up to a 25% speed loss. **Note:** For units with the synchronization option, the speed at a given load is 25% lower than for those without. This is true irrespective of the unit being in synchronization or override mode, or simply run individually. ### Accessories |
Limit Switches for Cover Tube Mounting | | | | |--|--------------------|-----------------------------|-----------------| | Sensor type | | solid state | reed switch | | Contact type | | normally o | open (N.O.) | | Output type | | PNP | contact | | Voltage | [VDC/AC] | 10 - 30 / - | 5 -120 / 5 -120 | | Max. current | [mA] | 100 | | | Hysteresis | [mm] | 1.5 | 1.0 | | Operating temperature | [°C] | - 25 to + 85 | - 25 to + 85 | | Lead cross section | [mm ²] | 3 × 0.14 | 2 × 0.14 | | Length (L) | [mm] | 25.3 | 30.5 | | Protection class | | IP69K | IP67 | | LED indicator | | yes | | | Connection | | 2 m cable with flying leads | | | p/n | | 840-9131 | 840-9132 | ### **Dimensions** [mm] ### **Connection** Solid state Reed switch blue - VDC blue - VDC The limit switches are mounted in the cover tube slots and will be switched by a magnet mounted inside of the actuator on the extension tube. | Rod End Front Adapter | | | | |---------------------------|---------------------------------------|----------------------------------|--| | Туре | metric | inch | | | Material | CAD plated steel | | | | Dimensions
A
B
C | 12.0 ± 0.1 mm
14.3 ± 0.1 mm
M12 | 0.5 in
0.625 in
1/2-20 UNF | | | p/n | 756-9021 | 756-9007 | | ### **Dimensions** [mm (in)] The rod end front adapter comes in one metric and one inch version. The metric adapter can be mounted to the front of the extension tube if the actuator is equipped with the metric female thread front adapter option (type P), while the inch adapter requires the inch female thread option (type G). 28 www.thomsonlinear.com/hd brown — input ### Online Resources Thomson offers a wide variety of online application, selection and training tools to help you in the selection process. An experienced team of application engineers is also available to help size and select an Electrak® HD model to best fit your application needs. To explore additional technical resources and options, contact Thomson customer support at www.thomsonlinear.com/hd. ### **Electrak HD Microsite** Get additional information and learn more about the electromechanical advantage on our microsite. www.thomsonlinear.com/hd ### **Product Selector** The product selector will walk you through the selection process. www.thomsonlinear.com/website/com/eng/products/actuators/linear_actuators_selector.php ### **Interactive 3D CAD Models** Download free interactive 3D CAD models in the most common CAD formats. www.thomsonlinear. com/micro/electrakhd_eng/3d-model.html ### **Smart Actuation** As the industrial world becomes increasingly connected, the designer's need for intelligent components that can communicate with each other and operate without the need for manual interaction is growing. Thomson is meeting this demand and helping to usher in a new generation of "smart" actuators where Electrak HD is one of them. Learn more about smart actuation at www.thomsonlinear.com/smart. ### **Smart Actuation Benefits** - Increased efficiency and productivity. - Enhanced diagnostic capabilities and controllability. - Fewer components and less cabling. - Minimized complexity and easier installation. - Reduced hardware and software costs. - Decreased machine development time and weight. - Improved machine functionality and performance. ### **Seamless Interconnectivity** The smart factory incorporates a number of interconnected machines and devices that take advantage of advanced actuation features to enable a fluid, synchronized and safe manufacturing process. These can include fork lifts, assembly/control stations and fixtures, automated guided vehicles, and components that can be easily and quickly adjusted on the fly. ### Leverage Decades of Design and Application Expertise Thomson is the market share leader for electric linear actuators in the most demanding applications, including construction and agriculture vehicles. We routinely collaborate with original equipment manufacturers globally to solve problems, boost efficiency and enhance the value passed on to their customers. Global contact information is available at www.thomsonlinear.com/cs. From the pioneer in industrial actuators comes a legacy of technologies and application experience that can be harnessed to help with your next machine design, too. Call today and let's talk about how our vast offering of standard, modified standard and custom solutions can deliver the optimal balance of performance, life and installed cost for you. ### Frequently Asked Questions Here are answers to common questions we receive. If you need more information, please contact customer support at www.thomsonlinear.com/cs. ### What is the typical life of an actuator? Life is a function of load and stroke length. Please contact customer support for more information. # What are the most common reasons for premature actuator failure? Side load due to incorrect mounting, shock loading, exceeding the duty cycle and incorrect wiring are the most prominent causes for premature failure. ### What are IP ratings? IP (International Protection Marking) ratings are commonly referenced standards that classify electrical equipment using standard tests to determine resistance to ingress of solid objects (first digit) and liquids (second digit). See the IP Ratings table below. # Is Electrak HD suitable for tough environments such as washdown or extreme temperatures? Yes. Electrak HD actuators are designed for washdown and have passed 200 hours of salt spray tests. They can operate in temperatures ranging from -40°C (-40°F) to +85°C (185°F). ### How is the duty cycle determined? The duty cycle = on time / on time + off time. For example, if Electrak HD is powered for 15 seconds and then off for 45 seconds, the duty cycle for that minute would be 25%. All models are rated to 25% at full load, and an ambient temperature of 25°C (77°F). If load and/or ambient temperature are lower, then the duty cycle can exceed 25%. At higher temperatures, the duty cycle will be lower. Also see the duty cycle vs. load curve on page 19. | IP Rating | | | |-----------|--|---| | Code | First Digit Definition | Second Digit Definition | | 0 | No protection. | No protection. | | 1 | Protected against solid objects over 50 mm. | Protected against vertically falling drops of water. | | 2 | Protected against solid objects over 12.5 mm. | Protected against vertically falling drops of water, if the case is disposed up to 15° from vertical | | 3 | Protected against solid objects over 2.5 mm. | Protected against vertically falling drops of water, if the case is disposed up to 60° from vertical | | 4 | Protected against solid objects over 1 mm. | Protected against splash water from any direction. | | 5 | Limited protection against dust ingress (no harmful deposits). | Protected against low-pressure water jets from any direction. Limited ingress permitted. | | 6 | Totally dust protected. | Protected against high-pressure water jets from any direction. Limited ingress permitted. | | 7 | - | Protected against short periods of immersion in water. | | 8 | - | Protected against long, durable periods of immersion in water. | | 9K | _ | Protected against close-range, high-pressure and high-temperature spray downs. | ### Is Electrak HD maintenance free? Yes. Electrak HD never requires lubrication, maintenance or adjustment for wear. # Is it possible for a load to back-drive the extension tube? No. The ball screw models incorporate a static load holding brake. # What is the difference between a tension and a compression load? A tension load tries to stretch the actuator, while a compression load tries to compress it. With bi-directional loads, the end play of the actuator extension tube may need to be taken into consideration when using the actuator for positioning tasks. ### Can Electrak HD be side loaded? No. A proper design of the application should eliminate any side loads. # What is the range of input voltage an Electrak HD can operate with? A 12 Vdc version will accept 9-16 Vdc, while a 24 Vdc version will accept 18-32 Vdc. Outside of these limits, the Electronic Monitoring Package will prevent the actuator from operating. # Can the speed of an Electrak HD be adjusted by changing the input voltage? No. As long as the input voltage is within the acceptable limits, the Electronic Monitoring Package will keep each Electrak HD at the correct speed for the load in question. ### What is the inrush current? The inrush current is a short current peak that appears at the start of an actuator as the motor tries to get the load moving. Typically, the inrush current will last between 75 to 150 milliseconds and can be up to three times higher (on a low-level switched actuator 1.5 times higher) than the current for the actuator and load. Batteries have no problem delivering the inrush current, but if using an AC-powered power supply, it is important to size it to handle the inrush current. # What special mounting considerations does the Electrak HD require? There is no restraining torque that needs to be considered as Electrak HD is internally restrained. However, the actuator must be mounted so that there are no side loads acting on the extension tube. It is also important that the manual override input is accessible after the actuator is mounted and that connectors and cables are placed so that they are not damaged during operation. ### What is the maximum extension speed? The extension speed of an Electrak HD actuator is a function of the load. To determine the speed at a certain load, consult the load vs. speed charts on page 19. If a higher linear travel is required, a simple mechanical linkage can be employed. ### **USA, CANADA and MEXICO** Thomson 203A West Rock Road Radford, VA 24141, USA Phone: 1-540-633-3549 Fax: 1-540-633-0294
E-mail: thomson@thomsonlinear.com Literature: literature.thomsonlinear.com #### **EUROPE** ### **United Kingdom** Thomson Office 9, The Barns Caddsdown Business Park Bideford, Devon, EX39 3BT Phone: +44 (0) 1271 334 500 E-mail: sales.uk@thomsonlinear.com #### Germany **Thomson** Nürtinger Straße 70 72649 Wolfschlugen Phone: +49 (0) 7022 504 403 Fax: +49 (0) 7022 504 405 E-mail: sales.germany@thomsonlinear.com #### **France** Thomson Phone: +33 (0) 243 50 03 30 Fax: +33 (0) 243 50 03 39 E-mail: sales.france@thomsonlinear.com #### Italy Thomson Largo Brughetti 20030 Bovisio Masciago Phone: +39 0362 594260 Fax: +39 0362 594263 E-mail: sales.italy@thomsonlinear.com ### Spain Thomson E-mail: sales.esm@thomsonlinear.com ### Sweden Thomson Estridsväg 10 29109 Kristianstad Phone: +46 (0) 44 24 67 00 Fax: +46 (0) 44 24 40 85 E-mail: sales.scandinavia@thomsonlinear.com ### **ASIA** #### **Asia Pacific** **Thomson** E-mail: sales.apac@thomsonlinear.com #### China Thomson Rm 2205, Scitech Tower 22 Jianguomen Wai Street Beijing 100004 Phone: +86 400 6661 802 Fax: +86 10 6515 0263 E-mail: sales.china@thomsonlinear.com #### India Thomson c/o CNRG Energy India Pvt. Ltd. Unit No. FF A 07 Art Guild House, A Wing, 1st Floor, L.B.S Marg Kurla - West, Mumbai - 400070 India Phone: +0091 22 6249 5043 Email: sales.india@thomsonlinear.com #### Japan Thomson Minami-Kaneden 2-12-23, Suita Osaka 564-0044 Japan Phone: +81-6-6386-8001 Fax: +81-6-6386-5022 E-mail: csjapan@scgap.com ### **South Korea** Thomson F7 Ilsong Bldg, 507, Teheran-ro, Gangnam-gu, Seoul, Korea, Zip Code: 06168 Phone: +82 2 6917 5048 & 5049 Fax: +82 2 528 1456 & 1457 E-mail: sales.korea@thomsonlinear.com #### **SOUTH AMERICA** #### Brazil Thomson Av. Tamboré, 1077 Barueri, SP - 06460-000 Phone: +55 11 3616-0191 Fax: +55 11 3611 1982 E-mail: sales.brasil@thomsonlinear.com